UUCMS. No. B.M.S COLLEGE FOR WOMEN BENGALURU-560004 III SEMESTER END EXAMINATION – APRIL 2024 M.Sc. MATHEMATICS - TOPOLOGY-I (CBCS Scheme-F+R) **Course Code MM103T OP Code: 11003 Duration: 3 Hours** Max. Marks: 70 Instructions: 1) All questions carry equal marks. 2) Answer any five full questions. 1. (a) Define an infinite set. Let X be an infinite set and let $x_0 \in X$, then prove that $X - \{x_0\}$ is infinite. (b) Show that (i) Superset of an infinite set is infinite. (ii) Subset of a finite set is finite. (7+7)2. (a) Prove that any non-empty subset of a countable set is countable. Also prove that the set of all integers is countable. (b) Prove that $N \times N$ is denumerable. (7+7)3. (a) Define metric space. Suppose (X, d) is a metric space, let $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ be defined on $X \times X$. Prove that d_1 is a metric on X. (b) Prove that every closed subspace of a complete metric space is complete. (8+6)4. (a) State and prove Cantor's intersection theorem. (b) Prove that every complete metric space is of the second category. (7 + 7)5. (a) Define topological space. Prove that every metric space is a topological space. (b) Define (i) neighbourhood of a point (ii) limit point of a set. Let $A \subseteq (X, \mathcal{T})$ then prove that $A \cup D(A)$ is closed, where D(A) is derived set of A. (7 + 7)6. (a) Define interior and boundary of a set. Prove that $(A')^0 = (\overline{A})'$. (b) Prove that $\overline{A} = A \cup b(A)$. (8+6)

BMSCW LIBRARY

- 7. (a) Let (X, \mathcal{T}) be a topological space. Prove the following
 - (i) *X* is neighbourhood of every point.
 - (ii) If A is a neighbourhood of x and $A \subseteq B$ then B is also a neighbourhood of x.
 - (b) Show that a bijective function $f: X \to Y$ is homeomorphism if and only if $f(A^0) = [f(A)]^0$ for all $A \subseteq X$.
- 8. (a) Show that closure of a connected set is connected.
 - (b) Prove that union of family of connected sets with non-empty intersection is connected.
 - (c) Give an example to show that a connected space is not locally connected.

(5+5+4)

(7+7)
